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PULSE COMPRESSION DEGRADATION DUE TO OPEN LOOP
ADAPTIVE CANCELLATION, PART II

1. INTRODUCTION

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The pertinent assumptions of that
analysis are:

1. the adaptive canceller was implemented by using the Sampled Matrix Inversion (SMI) algo-
rithm [2] or its equivalent, the Gram-Schmidt canceller {3],

2. the input noises were temporally independent and Gaussian,

3. the desired signal’s input vector (or code) was completely contained within the samples that
were used to calculate the adaptive -weights and is only present in the main channel, and

4. the adaptive weights were computed from the same data set to which they are applied (con-
current processing).

Earlier research has shown that because of finite sampling, the quicscent compressed pulse
sidelobe levels are degraded by preprocessing the main channel input data stream (the uncompressed
pulse) through the adaptive canceller. It -was also shown that the level of degradation is independent
of whether pulse compression occurs before or after the adaptive canceller under assumption three.

The exact expression [1] for pulse compression degradation requires computer assistance to
evaluate this expression. This report derives a “‘rule of thumb’* expression that is a good approxima-
tion to the exact expression.

2. BACKGROUND

Figure 1 is a functional block diagram of an adaptive canceller followed by a pulse compressor.
The adaptive canccller linearly weights the auxiliary channels with weights that are calculated from a
batch of sampled input data. The main channel consists of a desired signal plus noise that may or
may not be correlated with the auxiliary channels. It was shown in Ref. | that when analyzing the
pulse compression degradation it is necessary only to consider the interaction of the main channel’s
desired signal with the random variables in the auxiliary channels (Fig. 1). Thus for analysis pur-
poses, the adaptive weights of x,, n = 1,2, ..., N = | arc only a function of the desired signal s
and the samples of x,,. Furthermore, as the number of independent samples goes to infinity, the auxi-
liary adaptive weights go to zero [1].

Manuscript approved April 4, 1991,
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MAIN | AUXILIARIES :
CHANNEL: ¢ X{ X XN-1
DESIRED
SIGNAL cer
ONLY Y i
GSk n

, PERTURBED DESIRED
§ SIGNAL

Y

MATCHED
FILTER:s

lOUTPUT

Fig. I — GS canceller followed by
a matched filter

In Fig. 1, s represents the desired signal vector (or code) of length L, and
X, n =1, 2, ..., ¥ — 1 represents the nth auxiliary random data vector of length K. The canceller
shown is the Gram-S.hmidt (GS), which is numerically equivalent to the SMI algorithm [3]. We
denote it by GSg » where K is the number of samples per channel used to calculate the canceller
weights and A is the number of input channels (main and auxiliaries).

The pulse compressor is essentially the matched filier for a given radar waveform. Most of the
energy in the received radar waveform is compressed iato a given single range cell and, thus, the sig-
nal level can be increased significantly for detection purposes. However, some energy dJoes leak into
the sidelobes of the compressed pulse response, resulting in low gain in range cells outside of the
given range cell. If a target or piece of clutter-is large enough, it can break through and be detected
in these range sidelobes, falsely indicating a target detection or masking a real target. Thus it is
highly desirable to maintain.a low sidelobe response.

Let r equal the 2L - | output vector of the pulse compressor. If an adaptive canceller is not
being used, then it is straightforward to show that

r =S's (D
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where

- . T
s = (Sl_ S92, veey SL) .

Sp 0 0
SL —1 SL 0
SL-2 SL-1 s 0 0
ST = Sy S2 S3 oS @
0 s 5 SL -1
0 0 Sy "7 SL-2
0 0 o --- S

and T,r denotes transpose and complex conjugate transpose, respectively. S is a L x 2L — 1)
matrix called the autocorrelation function (ACF) matrix of s. If L < K, we define an augmented-sig
nal vector s,,, of length X such that the first L elements are elements of s and the remaining elements
are zero. Sg, Is defined as the augmented 2K — 1) X (2K — 1) ACF matrix of s using the cle-
ments of sg,. The quantity r,,, is defined as the augmented 2K — 1 vatput vector of the pulse
compressor. Thus

= ¢l
r(mg = Saugsaug- (3)

Let s be the resultant output vector after s has bzen processed through the GS canceller and s,,, be
the resultant augmented GS output vector. This resultant output vector is then inputted to the matched
filter of the vector s, or equivalently, s,,,. If we set r’ equal to the respense of Saup Match filtered
with s, then

r, = S:"lgs(:llg‘ (4)

In Ref. 1 it was shown under assumptions I through 4 (given in Section 1) that the average
pulse compressed sidelobe level after adaptive cancellation is given by

KK + DA (K,N) K(K + 1)

SLall) = IO TN K-V D

AnpK,N)|s(DIF, (5)

(K-N+ 1)K -—-N+2)




where

SL\!)

SL.1)

N

sc(l)

1.
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is the average pulse compressed sidelobe level after adaptive cancellation of the /th range
sidelobe (sidelobes are numbered x/, I = 1, 2, ..., these can be related directly to the
elements of r’; for-exaniple, / = £ 1 are the sidelobes adjacent to the match point).

is the-yuiescent pulse compressed sidelobe level of the /th sidelobe (K = o or equivalently
nv adaptive cancellation before pulse compression, these can be related directly to -the ele-

ments of r)

is the number of independent samples per channel used to calculate the adaptive canceller
weights

is the number of channel (ma:n and auxiliarics)

is the K —Ith column of the augment AFC matrix S, ! # K, and

s OIF = st() s

Note that SLat/) and SL,(/)-are ncrmalized to the mairlobe pulse compression gain (adapted or quies-
cent. respectively) which is set equal to one or 0 dB.

The scalars 4, (K,N) and 4,>(K,N) are computed as follows. Consider the two parallel adap-
tive cancellers shown in Fig. 2. Define

up,Vp are arbitrary K-length main channel input vectors,
uy, vy are K-length-main channel output vector, and

X, = (1), X4(2), coes % (K)DT, m =1, 2, ..., N — 1, K-length random data vector

of the nth auxiliary channel.

The clements of x,,, n = 1, 2, ..., N == 1, are assumed to have the following characteristics:

k), n =1,..., N~ 1, k=1,... Kareidentically distributed circular Gaussian com-
plex random variables (r.v.)

Elx,(k)) = 0, Ef|x,(k, i2} = 1, where £{-} denotes expectation and | | denotes magni-
tude

Elx, tk)xi (ky)} = O unless ny = n and ky = k,, where # denotes coimplex conjugate.
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Ug Xy X XN-1 Vo X4 Xz XN=~1

GSkn GSkn

Un-1 V-1

Fig. 2 — Parallel N-input GS cancellers

Define
2 1
= - + = . eee - 6
a =1 K—-n (K—n)(K—n+l)’” 0, 1w, N =2 ©)
by = ! ™
T =K -n+1)
It is shown in Ref. 1 that
Ef|uly—vp—1 I} AN Ap(K.N)] | Jubve|? .
ElluyPlvy 3| T |42 &™) 4n00)| | ol Ivoll? ®

where

AII(KsN)AI'.’(K’N) N~=2 rau bn
] . 9)

Agl(K,N)A'_)z(K,N) l-’),, a,

n=0

Equations (8) and (9) resulted from sulving the following coupled recursive relationships that were
derived in Ref. 1:

r t 2y - Ffi LTS 2 — 2 l —l
E”unHVnHI i E”“‘n‘nl } [‘ K -n + (K —_ ")(K —n+1

=1

200 12 !
+ Efllu,I*[Ivall”) [(K Y — 1)] (10)
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2 2 t 2 1
E{"un-&l“-“vn-H“_} = E“u"v"l ; [(K - K —n + 1)]

2ne 12 2 1
+ EllulPval?) [1 =+ (K_")(K_"H)J ay

wheren =0, 1, ..., N — 1.

3. BOUND DERIVATION

The expression derived for SL, given by Eq. (5), although exact, does not readily indicate how
the adaptive sidelobe level varies with N and K. In this section we derive a tight upper bound on SL,
that is in terms of explicit expressions of K and-N.

This bound is obtained by considering Eqs. (10) and (11). Instead of deriving a recursive rela-
tionship for E{}ju,}*||v,]I*} in this equation, we upper-bound this expectation by using the inequality

4

Efllu 2123 = VEllu ) Eflvali*)- (12)

This incquality is merely another form of the Cauchy-Schwartz inequality. It allows us to upper-
bound the joint moment in terms of moments of individual random variables.

It was shown in Ref. 3 that

2 iy — s K =YK —n +1) |
and
4 4 (K'—")(K—Il""l)
=l = . 4
Efly = ol = (14)
Substituting these expressions into Eq. (12) results in
2 2 s (K—=n)}K - n + 1
Ellun PP} = ool i (15)
Substituting Eq. (15) into Eq. (10) results in
el o) 2 l
E "r’:* Vael |71 = E r’r i (l - = +
t et 1] Hu‘!‘L K~—-n (K—n)(l(—n+l)]
] 2 l
+ Jluoll*lIvoll” (16)

KKK +1)

e
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It is apparent from Eq. (16) that E{Jufv,|%), n = 0, 1, ..., N~1 can be upper-bounded by
w, where w, is found by the recursive relationship

2 | . lwolPlivel
Wy = [l - K + } wy + _'L_'_ 17)

-n K-mK-n+1) KK + 1)

Initial condition (IC) wy = |ubvy|>.

We can show that wy _; has the form

(&) = ‘\ﬁz | 2 + l lubv ‘2
N-1 K —n K~-n)K—-n+1) 17070

n=0

+ ¢ flugl*]Ivol®, (18)

where ¢ is a constant to be determined. In fact, ¢ does not.depend on the instial condition, a fact that
we.use to find ¢c. For ug = vy, it follows from Eq. (13) that

2NV =1 N — DN
an-1 = Elflow-1I) = {1 - R +)1)] ol a9

Substituting Eq. (19) into Eq. (18) and solving for c,

Gy _2N-1  (N-DN  N=2 2 I
c=1 K +K(K-!-l) Il [l K—n+(K—n)(K—n+l)}' (20)

n=0

It is shown in the Appendix that
N2 2 1 N-1)°
I - + 1 - 2
,E) [ K~-n (K-—n)(K-n-!-l)] < [ K D

(K=N+2)N-1

and

< 22
S TRK - DK + 1) 22)
Thus inserting these incqualitics into Eq. (19) results in
o]
N—-1]" - K—=N+2)N ~1 .
Ef|ub-rvy-1 %) < {1 - J lupvo |2 + S Il )

To find a bound on the adaptive compressed sidclobe level as was done in Ref. I, we set
Up = Sy and vy = s, where s, is the augmented K-length signal vector and s, is a column of the

7
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augmented signal matrix. We note that [|s|> = 1 and that SL, = |sts|®. It was shown in Ref. 1

that the expected value of the match point of the compressed pulse preprocessed by a GSg._x canceller
is

K-=N+DHK-=N+2

"Hel2y — )
E]s"s|?) Rt T @
Thus if we divide both sides of Eq. (23) by the expected value of the match point we find j
N -1 2 N -1
SL,(y < |1 - SL, () + i . 2
o) [ K(K_N”)J O + 15O e & =D (25)
We set
~ N =1
K,N) =1 - 2
0K =1 - T (26)
and
el N -1 :
ASL,(K,N) = . 2 ‘
SLa(K.N) K-N+1)K-1 @7 |
Thus |
SL() < QUK.N)SLy(1) + ASL,(K,N)[s. (D] (28)

Similarly, define the quiescent sidelobe level factor

_ KK + DAy (KN)
Quk.N) = K-N+1)K=-N+2) @9

and the adaptive side perturbation

ASL(K.N) = K(K + DA p(K,N) 30
"(’)—(K—N+l)(K—N+?.) G0

so that Eq. (3) can be rewritten as

SL(1) = QUK.N)SL,(1) + ASL,(K.N) [ls(D]>. €]))

4. RESULTS

We now demonstrate in graphical form that é(l\’..’\') and AS‘L,,(K..V; are close approximations of
the guicseent sidelobe level factor QUKLN) and the adaptive sidelobe perturbation ASL(K..N), respec-
tively. Define the following ratios

Y
ro = (.2(1\.1\) ) (32)
Q(K.N)

8




NRL REPORT 9309

_ ASL,(K.N)

ra = .
ASIL(K.N)

(33)

We sct Nye = N = 1 and K = MN where M is a positive integer and calculate rp and ry vs
Na and M. We restrict M = 2. Many cases were run (M =< 10. N = 100). and the wo ratios
were always less than one and lower-bounded by the case when M = 2. Thus. we only present the
curves for M = 2. The close approximation is verificd by the plots_of r, and 7, shown in Figs. 3
and 4, respectively. The worst-case approximation of Q(&K.N) by Q(K.N) occurs when N, = 1.
M = 2. In this case rp (dB) = —1.76 dB.

00

Pie2

-1.0

to(0B)=—1.76 GBFOR N, = 1
-20}

g (0B

- 5.0 1 3 ¥ 7 L3 & ¥ . £
00 10 20 3 0 5 65 70 &0 ¢  icD

N, . RO. OF AUXILUARIES

Fig. 3 —rpvsN_ . M =2

- A

An cven better approximation of Q(K.N) was found by using the expression

N -1

ASLAKN) = —bo 1
LaR-N) (K =N+ DK

34

Note that the difference between the expression for ASL, given by Eqgs. (349 and 27) is that the
K = 1 is replaced by K. Define the ratio

A '

ASL D’

"Jl
4
Ld

Figurc 3 plots this ratio for M = 2 vs V5. Note that the worst-case approximation occurs when
Npw = 2.M =2, Inthis case, rfy (dB) = =51 dB.

9
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r (dB)

~401

-50 ! ! 1 1 1 ] ! ! L 1 )
0.0 10 20 30 40 50 60 70 80 90 100 110

N, .. NO. OF AUXILIARIES

aux’

Fig. 4 —ry VS Ny, M =2

0.0
-\/— M=2

\r' dB)=~-.51dB
—10lk » (dB)

(dB)

,
s

-5.0 ! 1 1 ) } 1 1 1 1 1 y
) 10 20 30 40 50 60 70 80 90 100 110
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Fig. 5 — r} (B) vs Nyu» M =2
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Because é(K, N) and AS~L,,(K,N) are close approximations to Q(K, N) and ASL,(K,N) respec-
tively, it is straightforward to show that

2
A (KN) = [l - N= ‘J : (36)

K

and

(K=N+2)N-1

ApK,N) = = 37
Again, if we replace K — 1 with K in Eq. (37), an even better approximation results:
Apiyy = B DD (38)

K2K + 1)

Inserting the approximate expressions given by Eq. (26) for Q(K,N) and Eq. (34) for
ASL,(K,N) into Eq. (31) results in

N N -1 )
SLa(l)= [1 XE VT 2)}5@,(1) t BN I OF: 39)

Define K34p(l) to be the minimum number of independent samples such that SL,(/) = 2S_L-q, where

SL, = In}a)(() SL,(D); (i.e., the average adaptive sidelobe level at a specific range sidelobe / is at most 3
s $ ~

dB above the maximum quiescent sidelobe level). It is straightforward to-show that

stg(z)éN“Jr\/ LAY e o 0)
2 2 2SL, — SL,(I)

when SL (/) << 1. The actual number of samples used to ensure that all adaptive sidelobes are
below 2SL, would be

K3 = max Ksgp(/). (41)
110

If the maximum quiescent sidelobe level occurs close to the main lobe, then J[s ]|> = 1 and we find
that K345 (/) is maximized at this maximum quiescent sidelobe level. Hence,

-
. N~—-1 N-—-1]" N -1
Kyp = — +’\/[ > J + = (42)
J(I

Reference 1 pointed out that the pulse compression degradation analysis can be applied to quan-
ufying the canceller degradation caused by a desired signal’s presence in the samples used to calculate
the adaptive weights. If the desired signal has the power o> after pulse compression, then the average

11
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power residue caused by the signal in the K — 1 range bins not containing the signal can be shown to
equal at most 62ASL,(K,N) plus possibly the signal power due to the quiescent compressed sidelobes.
Let 02, be the quiescent output noise power level of the canceller. Define

a2 )
8() = ASL,(K,N) —— ls.D]| 43)
O min
and
6= (). 4
fnax () 44)

One normally desires 6 < 1, otherwise the desired signal generates more range sidelobe power than
the noise power residue. Because max IscI> = 1 and using the good approximation for ASL,(K,N)
*

given by Eq. (34) then ’

Ny N -1 o3

K =N+ DK o2

45)

It is desirable to know the number of independent input samples Ky such that 6 = 1. It can be

shown that
2 2
N -1 \/rN—L 05
= + - .
) 5 L 2} +WN =1 46)

Omin

We note that 02 /02, ¢quals the output signal-to-noise power ratio (S /N),, of the adaptive canceller.
Thus Eq. (46) reduces to

R

5. SUMMARY

An exact expression for the perturbed sidelobe level of a compressed pulse that has been pre-
processed through an adaptive canceller was derived in Ref. 1. The exact expression requires com-
puter assistance to evaluate this expression. In this report, a ‘‘rule of thumb'* expression is derived
that is a good approximation to the exact expression. Furthermore, this same approximation can be
used to derive a good approximation for the canceller noise power level that is induced by having a
desired signal present in the canceller weight calculation. An expression for the number of indepen-
dent samples necessary to equalize the signal-induced power with the quiescent interference level is
also derived.
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Appendix
PROOF OF EQS. (21) AND-(22)

We first prove Eq. (21). Define

N-2 [

~

2 1
b—,,l;]i) ¥1_ K ~n * (K—n)(K—n-{-l)J
N=2 [ 2 5 1 1
ﬂE,J"K—n+m—mm-n+nJ 1"(K—n)ur(—n—l)
N2 (" 2 9 ) N2 [’ i
ﬂghf'x—n+w—mm—n+qbg’f_w—mm—n—n‘
Now
ol - 2 + 2 _K-N+DEK-N+2
,E) K—=n (K-n)K-n+1) KKK + 1)
(A VI )
K KK + 1)’
Thus
K -N+DE-N+2 N2 | 1
b= KK + 1) ,g[} w—mm—n—nJ
KE-=N+I)K—-N+2 N=2 |
| - .
© K& + 1) I [ ® - ,,)2]
Now
E?]_ 1 K+ DK ~N+1D
=0 (K = n)? KK - N +2)
Thus

m—N+n2=

b < %2

15

[1_

Jz.

(AD)

(A2)

(A3)

(Ad)

(A5)
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Next we prove Eq. (22). Set

N=2 1
“=,£Io bk m&E=n-D|

Now
3 2N -1 NN -1
b’{” K +K(K+i)]“
and
a > l\ﬁz I—I - I = K& - N)
im0 | K =n =1y K- DE-N+1

or

l—a<-—"KEKE=N) - N -1

Using Eq. (A7) and Eq. (20), it can be shown that

_ _2N-1D (N — DN _
c = [1 X + K& + 1)] (1 - a)

Using Eq. (A9) it follows that

K-DK-N+1 (K—l)(K-N+‘1)'

2N -1 , (N=DN CON-1
c<[l X +K(K+11)J

or

K ~N+2WN - 1)
KK - DK+ 1)

¢ <

16

K — DK —= N + 1)

(A6)-

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)




